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Figure 1: Sample scene consisting of roughly 1.9 million triangles (left). Our method (middle) results in a significant reduction of ray
shooting costs compared to a regular bounding volume hierarchy (right). The heat views visualize the summed number of traversal steps and
primitive intersections for primary rays.

Abstract

Bounding volume hierarchies (BVH) have become a widely used
alternative to kD-trees as the acceleration structure of choice in
modern ray tracing systems. However, BVHs adapt poorly to non-
uniformly tessellated scenes, which leads to increased ray shoot-
ing costs. This paper presents a novel and practical BVH con-
struction algorithm, which addresses the issue by utilizing spatial
splitting similar to kD-trees. In contrast to previous preprocessing
approaches, our method uses the surface area heuristic to control
primitive splitting during tree construction. We show that our algo-
rithm produces significantly more efficient hierarchies than other
techniques. In addition, user parameters that directly influence
splitting are eliminated, making the algorithm easily controllable.
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1 Introduction

Ray tracing is a powerful image synthesis technique, which has
been used for offline rendering since decades and is becoming in-
creasingly important for real-time applications. However, ray trac-
ing is compute intensive and has to rely on preprocessed data struc-
tures to achieve fast performance. Among the methods to improve
ray shooting efficiency, hierarchical data structures are currently the
most important.
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In general, highest rendering performance is achieved with kD-
trees and bounding volume hierarchies (BVH). Especially BVHs
have recently been attracting increasing attention for several rea-
sons: BVHs are simple to construct, have a low memory footprint,
allow refitting in animations, and work well with packet tracing
techniques [Wald et al. 2007]. It has also been found that BVHs
tend to outperform kD-trees on GPU architectures, even for single
ray implementations [Luebke and Parker 2008].

Over the last few years, ray tracing efficiency with BVHs has been
tremendously improved, but this is almost solely due to novel and
highly optimized traversal algorithms. Only little research tackling
fundamental problems of the BVH, like large and heavily overlap-
ping bounding volumes, has been done. In this paper, we propose a
new method to significantly increase the efficiency of BVHs, espe-
cially for difficult scenes with highly non-uniform primitive sizes.
Our main contribution is an algorithm that greatly reduces overlap
of bounding volumes by using spatial splits during BVH construc-
tion. The basic idea is to split a given node using either object
list partitioning or spatial partitioning by selecting the more cost-
effective scheme. We demonstrate that the new method improves
several significant hierarchy metrics compared to other techniques:
overlap area, SAH cost, traversal steps and primitive intersections
are all reduced in the vast majority of cases. This results in con-
sistently improved ray tracing performance compared to traditional
methods in all our experiments.

2 Background

Ray tracing acceleration structures exploit spatial coherence by
sorting a scene’s primitives into spatial groups. That way, objects
of a group can be rejected immediately if the group is not relevant
to a ray. Typically, the most effective methods employ hierarchi-
cal tree data structures, whose leaves reference primitives. Internal
nodes contain spatial information to cull the associated part of a
scene. Generally, such acceleration data structures can be divided
into two categories: spatial partitioning schemes and object parti-
tioning schemes.

Spatial partitioning schemes recursively subdivide a given space
and distribute the geometric primitives into the resulting partitions.
Each primitive is inserted into all partitions it overlaps, potentially
resulting in multiple references for a primitive. This process is re-



peated until some termination criterion is met. kD-trees [Bentley
1975; Sung and Shirley 1992] perform binary spatial partitioning
using one axis aligned plane per node. An important property of
kD-trees is their ability to adapt to arbitrary scenes with highly
varying geometric densities. This leads to excellent culling effi-
ciency even in difficult settings. On the downside, kD-trees suffer
from high memory consumption due to deep trees and high refer-
ence duplication.

Object partitioning schemes, on the other hand, recursively divide
a list of primitives into disjoint sets. The full bounding volumes of
those sets are stored in the tree nodes and can thus have arbitrary
overlap. Such overlapping regions are expensive during traversal,
because rays that intersect these regions must traverse all nodes
contributing to the overlap. The actual definition of the bounding
volumes is arbitrary, but in practice, axis aligned bounding boxes
(AABBs) are most commonly used. They can be handled very effi-
ciently and in most cases enclose primitives reasonably well. Since
in a conventional BVH each primitive is referenced exactly once,
the hierarchies consist of fewer nodes than kD-trees for virtually all
scenes.

While in principle the use of n-ary data structures is possible for
both spatial partitioning and object partitioning schemes, the re-
mainder of this work will focus on binary trees.

2.1 BVH Construction

In many implementations, BVHs are constructed as described in
[Wald et al. 2007]: in each partitioning step, the primitive list of
the current node P is sorted based on the centroids of the primitive
AABBs. This ordered list is then split into two subsets P1 and P2,
for each of which a bounding box is created and assigned to the cor-
responding node’s children. This process is recursively continued.

In order to find a suitable split position in a specific primitive list,
sorting is performed for each of the three Cartesian coordinate axes.
The split axis and position is chosen based on the lowest estimated
ray tracing cost for the new child nodes. In order to estimate the
cost of a particular split, the surface area heuristic (SAH) cost func-
tion [Goldsmith and Salmon 1987; MacDonald and Booth 1989]
is used. This heuristic relies on the assumption that rays are uni-
formly distributed and do not intersect any primitive in the scene.
A ray which intersects a parent box Bp with surface area SA(Bp)
then intersects a child box Bc ⊆ Bp with surface area SA(Bc)
with probability SA(Bc)/SA(Bp). Using the SAH, the cost C of
tracing a ray through a node B and its two children B1 and B2 is
estimated as:

C = Ct +
SA(B1)

SA(B)
|P1|Ci +

SA(B2)

SA(B)
|P2|Ci,

where Ct is the cost of a traversal step, |P1| and |P2| denote the
number of primitives in each subset, and Ci is the cost of a single
ray-primitive intersection. The SAH not only helps to find a good
split position, it can also be used as a termination criterion for node
subdivision. In this case, a leaf is created whenever the cost for
splitting the node is higher than the cost of sequentially intersecting
all primitives.

3 Related Work

[Glassner 1988] introduced a hybrid technique combining adaptive
space subdivision with bounding volumes. The method builds an
octree over the scene and uses the resulting nodes to guide the

bottom-up construction of an overlap-free BVH. This BVH can
contain references to the same primitive in multiple leaves.

In order to improve BVH ray tracing performance in scenes with
non-uniform tessellation, [Ernst and Greiner 2007] proposed an
extended construction method called Early Split Clipping (ESC).
They build on the observation that it can be beneficial to refer-
ence primitives more than once in a BVH and use smaller bounding
boxes instead. This fact is exploited in a preprocess, which splits
primitive bounding boxes (not the primitives themselves), and cre-
ates new primitive references with tightened AABBs. Each AABB
is split recursively at the center of its longest axis until the box sur-
face area is below a user defined threshold SAmax. The final set of
references is then passed on to a regular BVH build process. The
resulting hierarchies are often of higher quality than regular BVHs
and succeed in improving ray casting performance. However, it is
left to the user to find a reasonable value for SAmax, which can
be a tedious process. In addition, because the tree is simply built
over the reference AABBs using an unmodified BVH construction
method, multiple (unnecessary) references to the same primitive of-
ten occur in the same leaf.

Similar to Early Split Clipping, [Dammertz and Keller 2008] de-
veloped the Edge Volume Heuristic (EVH) to reduce node overlap.
Their algorithm differs mainly in that actual triangles are subdi-
vided, not bounding boxes. Subdivision is done recursively and
stops once the largest bounding volume of the triangle edges falls
below a certain threshold. Tessellation is performed in a numeri-
cally robust fashion by dividing the triangle edge with the largest
AABB volume in the middle. The resulting primitive bounding
boxes can again be passed to a regular BVH builder. Unlike for
ESC however, [Dammertz and Keller 2008] propose to modify the
construction method to remove duplicate references from leaves.
The user defined subdivision threshold is related to the scene vol-
ume, making EVH somewhat more controllable than ESC. Because
EVH operates on edge AABB volumes, axis-aligned primitives are
never subdivided. This approach is in line with the idea that only
extremely expensive (non axis-aligned) triangles should be split.
On the other hand, many opportunities are missed to improve the
common case of overlap due to axis-aligned primitives.

3.1 Spatial Split Motivation

Both ESC and EVH perform splitting on a per-primitive basis and
do not take information about the surrounding geometry into ac-
count. Because the split positions for each primitive are indepen-
dent, the resulting reference AABBs tend to be unaligned, which in
turn easily results in unnecessary node overlap. Our method makes
informed splitting decisions during hierarchy construction by con-
sidering an entire set of primitives in a node. It is thus able to split
multiple references at once, and only do so if the estimated cost can
be reduced.

Figure 2 shows through a simple example how previous techniques
can be improved. Two triangles are partitioned as during hierarchy
construction, making the effects of various splitting techniques vis-
ible. Using a regular BVH results in two child bounding volumes
that almost entirely overlap (a). In the case of ESC (b), the triangle
AABBs are pre-split. Because the split positions fail to line up hor-
izontally, the AABBs cannot be separated by child boxes without
overlap. Subdividing the triangles according to the EVH (c) shows
hardly any improvement over a regular BVH in this case. As can be
seen in (d), a single spatial split produces child boxes without any
overlap.

Note that although this work focuses on constructing hierarchies
over triangles, the presented approach is applicable for any type of
primitive that can be clipped against axis-aligned planes.
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Figure 2: Overlap reduction with spatial splits. In this example, a node containing two triangles is partitioned, showing the effects of
various splitting strategies. The black boxes represent the child nodes produced by the partitioning. The pink shaded areas are the regions of
overlap. The splitting strategies used are: (a) no splitting (BVH), (b) ESC, (c) EVH, and (d) our method (SBVH). All methods but the SBVH
produce overlapping bounding boxes in this case.

4 The SBVH

To improve the efficiency of BVHs, we introduce a new construc-
tion algorithm, combining a traditional BVH build with the idea of
spatial splits. We call our approach Split Bounding Volume Hier-
archy (SBVH). In the spirit of [Glassner 1988], the restriction that
each primitive is only referenced once inside a BVH is relaxed.
This does not affect BVH traversal – a hierarchy which references
a primitive in more than one leaf can be used with an unmodified
standard traversal algorithm. We then observe that a node partition-
ing step during BVH construction is no longer limited to sorting a
primitive into either of the two child nodes. Instead, primitives can
now be sorted into both children, therefore duplicating the primitive
reference and potentially decreasing the size of the child bounding
boxes. This reference splitting during the construction phase (as
opposed to a preprocess) is a fundamental difference to previous
approaches.

4.1 SBVH Construction Algorithm

Similar to [Ernst and Greiner 2007], we build the hierarchy over
primitive references. A reference is a pointer or index to the as-
sociated primitive, combined with an axis-aligned bounding box.
Initially, there is one reference for each primitive, and the AABB
is set to the primitive’s bounding box. During tree construction, a
reference can be split, i.e., it is duplicated, and the AABBs of the
resulting children are updated to tightly enclose the contained part
of the original primitive. The final SBVH is thus equivalent to a
regular BVH over all the generated references (not primitives).

Adding the capability of splitting references to a BVH results in
much more freedom when deciding how to partition a node. How-
ever, the search space of possible splits for a given node also be-
comes significantly larger, thus making the process of finding a
good partitioning more complex.

We address the problem by separately considering splits which do
duplicate references (spatial splits) and those which do not (object
splits). The basic partitioning algorithm consists of three steps:

1. Find an object split candidate. This step is equivalent to the
conventional split search for a BVH node (see Section 2.1).
We use a full SAH search in our implementation, but other
variants could easily be used.

2. Find a spatial split candidate. This step is similar to the
partitioning process in kD-tree construction algorithms and
will be described in more detail below.

3. Select the winner candidate. Based on the SAH cost, the
cheaper of the above split candidates is chosen as the win-
ner. The node is partitioned according to that candidate if the
criterion for creating a leaf is not met.

Given a standard BVH builder, it is usually straightforward to re-
place its node partitioning method by the above algorithm.

4.2 Chopped Binning

As already mentioned, step 2 of the partitioning algorithm is some-
what similar to finding a split plane in a kD-tree. A common way to
partition a kD-tree node is to consider split plane candidates at the
AABB boundaries of all references in the node. Because this full
SAH approach is expensive, binning [Hunt et al. 2006; Popov et al.
2006; Shevtsov et al. 2007] is commonly used to speed up kD-
tree construction. With binning, split planes are considered only
at a fixed number of equidistant positions within the node AABB.
The references are projected into the resulting bins in a fast O(N)
pass, and counters associated with the bins are incremented for ev-
ery projected primitive. The SAH cost for each split candidate can
then be evaluated directly, without requiring a full sorting step. Af-
ter selection of the best split plane, a final O(N) pass distributes
the references into the child boxes.

We adopt the binning idea for the spatial split search in the SBVH.
Because SBVH nodes store full bounding boxes and always tightly
enclose their references, node children can adapt their size in all
dimensions, not just in the split dimension. Therefore, a simple
counter for each bin, like in conventional kD-tree binning meth-
ods, is not sufficient. Instead, we need to store one AABB per bin,
similar to techniques for BVHs [Havran et al. 2006; Wald 2007].
The actual binning process for a reference considers all bins that
the reference AABB overlaps. For each of those bins, the refer-
enced primitive is clipped against the bin boundaries, resulting in
an AABB that bounds the portion of the primitive inside the bin.
This resulting AABB is used to grow the AABB associated with the
bin. Similar to the min-max binning method for kD-trees [Shevtsov
et al. 2007], we maintain two additional sets of counters to keep
track of the number of reference entries and exits in each bin. The
process is illustrated in Figure 3. Because a reference is clipped
against multiple bins, we call the method chopped binning. Note
that this clipping of actual primitives against planes is analog to
split clipping [Havran 2000] at each candidate plane. Build per-
formance can be increased by clipping only the reference AABBs.
[Soupikov et al. 2008] noted that this approach reduces hierarchy
quality slightly for kD-trees, and our SBVH experiments are in line
with this observation. Thus, enabling candidate split clipping can
be regarded as a quality vs. performance trade-off parameter like



Figure 3: Chopped binning. Primitives are clipped against each
bin boundary, and the resulting boxes (light red) are used to grow
the AABBs of the bins. The top row shows the entry and exit coun-
ters after both references have been binned.

for the kD-tree.

When all references have been binned, it is straightforward to eval-
uate the SAH costs for split planes at the bin boundaries in a linear
pass. The left and right child boxes are given by the union of all
AABBs stored in the left and right bins, respectively. The number
of references on the left is computed by summing the entry coun-
ters left of the split position; the number of references on the right
is given by the sum of the exit counters on the right of the split
position. After computing the SAH costs for all split candidates,
the cheapest split is selected for subsequent comparison against the
best object split (step 3 of the partitioning algorithm in Section 4.1).

4.3 Spatial SBVH Splits vs. kD-tree Splits

Although spatial splits in the SBVH are similar to kD-tree splits,
there are a few important differences. The most obvious one is the
previously mentioned fact that in the SBVH, child nodes tightly
enclose their references. One consequence of this is the absence
of empty nodes in the SBVH. While most kD-tree implementations
take special care to minimize empty space, e.g. by creating empty
leaves, the concept does not apply for the SBVH. A few methods
for cutting off empty space in kD-trees are discussed in [Havran
2000].

Another interesting difference to kD-trees is that we never switch
to finding the exact minimum of the SAH cost function, as is com-
monly done in other binning algorithms once the number of refer-
ences is below a certain threshold. The reason is that, unlike for a
kD-tree, the SAH cost function is not guaranteed to have its min-
imum at one of the reference bounds. Because the child bound-
ing boxes can adapt its size in all three dimensions, the function is
piecewise quadratic1, as opposed to piecewise linear for kD-trees.
Furthermore, there may be C1-discontinuities which do not lie on
a reference bound. This makes finding the exact minimum unrea-
sonably complex, and so we resort to binning at all levels of the
hierarchy.

In general, the spatial split search for the SBVH can be kept rather
simple compared to the methods commonly used for kD-trees.
Nodes which are difficult to split by a single plane are problem-
atic for kD-trees. Simply creating a leaf in such cases can result in
inefficient trees, and good alternatives tend to be somewhat com-
plex to find. For instance, [Havran 2000] uses a heuristic to decide
whether a particular split could pay off in subsequent levels of the
hierarchy, even if its cost is relatively high. Such methods are not
necessary in the SBVH build. If the best spatial split candidate is
too costly, the object split candidate will simply be chosen instead.
Hence, a successful spatial split will never be worse than a regu-
lar BVH-like object split (in terms of SAH cost), and not finding

1For triangles and other linear primitives.

Figure 4: Unsplitting a reference. The reference to the red trian-
gle is split and inserted into both child nodes. The blue triangle’s
reference is inserted only into the right child, even though it strad-
dles the split plane as well. This introduces slightly overlapping
bounding boxes, but potentially improves the SAH cost of the split.

a good spatial split will never generate a worse split than a regular
BVH would.

4.4 Reference Unsplitting

While previously we have made a clear distinction between spa-
tial splits and object splits, there is in fact no reason why the two
concepts have to be kept separate. Because SBVH nodes hold full
bounding boxes (in contrast to a single plane like kD-tree nodes),
they can be allowed to overlap even for spatial splits. One can thus
create splits which are hybrids between spatial and object splits:
some references are duplicated at the split plane, while others are
allowed to straddle the plane. The latter are sorted into only one
child and therefore cause node overlap. An example of such a split
is shown in Figure 4. We exploit the idea of hybrid splits during
spatial split search in order to further improve SAH cost.

When considering a spatial split plane, there are three possibilities
for each reference intersected by the plane: it can either be split into
both children, or put entirely into only one of the two child boxes.
Thus, for N straddled references, there are 3N possible partition-
ings – generally too many to test exhaustively.

We employ a simple heuristic to select one of the three options for
each reference. First, the spatial split is computed as described pre-
viously, with all the straddled references being split at the candidate
plane. This results in two child boxes, B1 and B2, as well as the
reference counts for these children, N1 and N2. We then test for
each split reference whether “unsplitting” it, i.e. moving it entirely
to one of the children, decreases the SAH cost of the partitioning.
This is a conservative cost estimate, because the target box may
grow, while the box from which the reference is removed is not re-
computed and thus cannot shrink. In other words, we compare the
cost equations

Csplit = SA(B1) ·N1 + SA(B2) ·N2

C1 = SA(B1 ∪B4) ·N1 + SA(B2) · (N2 − 1)

C2 = SA(B1) · (N1 − 1) + SA(B2 ∪B4) ·N2,

where B4 denotes the bounding box of the (unsplit) reference in
question, Csplit is the cost for splitting the reference, and C1 and
C2 are the costs of putting it entirely into either one of the child
boxes. We then choose the action with the cheapest cost. In our
experiments, reference unsplitting resulted in a slightly improved
total SAH cost in almost all cases.

4.5 Restricting Spatial Split Attempts

The spatial split approach described so far is very successful in re-
ducing node overlap. However, one of the important advantages of



regular BVHs over other acceleration structures is their low mem-
ory consumption. Any method involving reference duplication nec-
essarily conflicts with that goal. To a certain extent, the SBVH
inherits the issue from kD-trees, which often imply large memory
footprint and deep hierarchies, especially if the desired number of
references per leaf is small.

Unlike for kD-trees, solving the problem for the SBVH is rather
simple. At no point during construction are we forced to actually
use a spatial split – a simple object split is always a valid alternative.
Thus, we can carefully choose the nodes for which spatial splits
are even considered, and make sure that reference duplication only
occurs where the expected benefit is high. Since the main purpose
of spatial splits is to reduce node overlap, we use the amount of
overlap produced by the best object split as a decision criterion.
More precisely, we compute the surface area of the overlap AABB

λ = SA(B1 ∩B2),

where B1 and B2 are the child bounding boxes of the object split
candidate with the lowest cost. We then relate λ to the surface area
of the hierarchy’s root node and compare it to a user constant α:

λ

SA(Broot)
> α

If the above condition is not met, step 2 of the partitioning algo-
rithm (Section 4.1) is omitted, and the object split candidate is used
exclusively. The parameter α is chosen to lie within the interval
[0, 1] and blends between a regular BVH without any duplication
(α = 1) and a full SBVH (α = 0). For the full SBVH, a spatial
split is attempted whenever the references could not be separated
without overlap by the best object split. Intuitively, α denotes the
overlap area to root area ratio which is tolerated without attempting
a spatial split. It is important to note that the user constant only
guides the spatial split attempts, not the reference duplication itself.
The actual splitting decisions are left to the SAH, eliminating the
risk of excessive splitting due to a poor choice of parameters. This
is in contrast to previous methods, where the user controls splitting
directly by choosing a threshold value, without being able to rely
on an automatic mechanism.

Experiments confirmed that applying our heuristic with α close to
zero generally results in hierarchies with excellent properties: be-
cause we measure the amount of overlap relative to the root node
(as opposed to e.g. relative to the node to be partitioned), smaller
nodes are unlikely to reach the threshold. Therefore, most spatial
splits occur close to the top of the tree, where they are most effec-
tive. Further down in the hierarchy, object splits are used almost
exclusively. This is acceptable, since potential overlap is small and
only affects relatively few rays during ray tracing. Compared to a
full SBVH, a non-zero α results in shallower trees requiring signifi-
cantly fewer references, yet leads to hardly any performance degra-
dation. Figure 5 shows a typical case, where practically all of the
attainable SAH cost improvement is reached around α = 10−5,
while requiring only a fraction of the full duplication rate.

5 Results

We compared the SBVH to Early Split Clipping, the Edge Volume
Heuristic, and a regular BVH build. ESC, EVH, and the regular
BVH used the full SAH evaluation described in section 2.1 at all
levels of the hierarchy, i.e. no binning or other approximations were
used. With all methods, nodes were split until the number of refer-
ences was eight or fewer. In order to fairly compare different con-
struction algorithms under similar memory budgets, we adjusted
the parameters of all splitting strategies such that they resulted in
the same number of references. The SBVH user constant α was

Figure 5: Influence of the α parameter. The plot shows the SAH
cost and reference duplication rate with varying α for the confer-
ence room scene. We found that a good performance/duplication
ratio is achieved around α = 10−5 for a wide range of scenes.

set to 10−5 in all reported tests. The number of bins for the SBVH
spatial splits was 256 at all levels of the hierarchy. For the timing
comparisons, we used a CUDA-based GPU ray tracer, which im-
plements our currently fastest traversal kernel. Performance was
measured on a NVIDIA GeForce GTX280 with CUDA 2.2.

Table 1 shows various statistics for the scenes we have used in our
experiments. As can be seen, the SBVH outperforms both regu-
lar BVHs and the other splitting approaches in nearly every com-
parison. The highest performance improvement is achieved in the
Sponza scene. Similar to [Dammertz and Keller 2008], we rotated
the original model around the canonical axes in order to provoke a
near worst case scenario for the traditional BVH. As a consequence,
the SBVH increases the number of references by about a factor of
two. In all other cases, which are less extreme, memory overhead
is far lower with its maximum as little as ~30%.

An especially noteworthy case is the “Bubs” scene: it consists of
a character with high polygon count (~1.8M triangles), surrounded
by a environment with only ~100K triangles. Because the majority
of the geometry is very finely and uniformly tessellated, one would
expect spatial splits not to improve performance much. Indeed, this
is true if the environment is removed from the model, in which case
almost no reference duplication (and therefore no speedup) occurs.
However, in the full scene, the low environment tessellation causes
overlap in the important top levels of a BVH, which in combination
with the dense character geometry makes hierarchy traversal expen-
sive. This situation is mitigated with minimal reference duplication
by the SBVH, which easily avoids the top level overlap by placing
a small number of spatial splits. The effect is visualized in Figure 1.

6 Conclusions

In this paper, we have presented the Split Bounding Volume Hierar-
chy (SBVH), which offers significantly improved culling efficiency
over conventional BVHs, and in our experiments consistently out-
performs previously published optimization techniques. The SBVH
mostly retains the BVH advantages of low memory footprint and
shallow hierarchies. In contrast to previous approaches like [Ernst
and Greiner 2007; Dammertz and Keller 2008], we perform split-
ting during tree construction instead of as a preprocess. This en-
ables splitting decisions on a per-node basis, which in turn allows
to generate additional references only when estimated ray trac-
ing costs are improved. Our tree construction method provides a



Build SAH Intersections Traversals Spatial Performance

Method References Nodes Cost (Avg/Max) (Avg/Max) Overlap Splits (Primary/AO)

Conference, 283K tris
SBVH 125% 124805 60.6 43.2 / 309 98.7 / 402 73% 3216 122% / 125%
ESC 125% 124633 97.6 35.7 / 649 126.0 / 530 97% – 87% / 103%
EVH 125% 124129 67.3 48.5 / 690 109.5 / 458 101% – 104% / 102%
BVH 100% 98703 73.2 63.0 / 935 117.1 / 488 100% – 100% / 100%

Rotated Sponza, 66K tris
SBVH 203% 50197 86.9 102.6 / 429 176.2 / 426 57% 6058 215% / 174%
ESC 203% 49041 172.3 150.3 / 678 247.4 / 594 116% – 139% / 114%
EVH 203% 49187 130.4 92.8 / 632 254.2 / 672 114% – 141% / 107%
BVH 100% 24291 123.5 224.1 / 969 321.9 / 797 100% – 100% / 100%

City, 879K tris
SBVH 117% 363859 57.1 34.6 / 245 120.8 / 336 74% 12320 134% / 139%
ESC 117% 363421 81.5 36.0 / 356 136.9 / 451 113% – 105% / 112%
EVH 117% 362701 71.3 37.4 / 331 149.9 / 599 118% – 96% / 93%
BVH 100% 308643 67.1 42.3 / 366 139.9 / 443 100% – 100% / 100%

Sibenik Cathedral, 80K tris
SBVH 128% 35079 75.4 38.9 / 267 109.0 / 280 76% 2990 116% / 113%
ESC 128% 35125 94.1 40.9 / 249 127.1 / 330 103% – 94% / 96%
EVH 128% 35369 93.7 39.9 / 341 126.9 / 459 125% – 95% / 94%
BVH 100% 26993 86.1 42.3 / 321 122.6 / 311 100% – 100% / 100%

Bubs, 1888K tris
SBVH 103% 669113 29.8 33.2 / 374 97.9 / 476 47% 1493 126% / 103%
ESC 103% 669771 53.4 28.3 / 458 135.6 / 509 70% – 94% / 88%
EVH 103% 668321 42.7 34.6 / 435 143.5 / 545 117% – 95% / 92%
BVH 100% 646783 44.6 92.2 / 465 126.7 / 501 100% – 100% / 100%

Soda Hall, 2169K tris
SBVH 112% 812509 106.7 31.7 / 619 108.5 / 390 76% 15241 124% / 118%
ESC 112% 810869 142.2 29.2 / 616 127.2 / 390 105% – 104% / 107%
EVH 112% 807029 127.5 33.5 / 756 122.4 / 534 107% – 93% / 99%
BVH 100% 713499 124.2 34.1 / 636 119.9 / 443 100% – 100% / 100%

Bar, 234K tris
SBVH 122% 97053 62.1 39.7 / 289 123.5 / 381 79% 3351 119% / 116%
ESC 122% 96143 86.6 34.7 / 321 145.3 / 379 108% – 107% / 102%
EVH 122% 97145 69.9 34.9 / 358 154.4 / 465 117% – 95% / 94%
BVH 100% 77697 67.4 41.1 / 373 152.7 / 414 100% – 100% / 100%

Table 1: Measurements for different build strategies. The applied strategies are listed in the first column. The second column shows the
relative increase of references compared to a regular BVH. The user thresholds for ESC and EVH are chosen so that the resulting amount of
references is equal to that of the SBVH. This is also reflected in the final tree size (third column), which in all cases is roughly equal among the
splitting based approaches. For all but one of the tested scenes, the memory overhead is less than 30%. Only in extreme cases like the Sponza
Atrium (rotated around all major axes by ~45◦), the number of references, and thus the total memory overhead, is higher. As can be seen
in the fourth column, the SAH cost for SBVH trees is well below the other approaches in all cases. The traversal and intersection statistics
(fifth and sixth column) are accumulated per pixel with one primary and four cosine-distributed ambient occlusion rays, and are averaged
over a number of typical viewpoints. Although the SBVH is not always able to reduce the average number of intersection tests compared to
ESC, it requires by far the fewest traversal steps. In addition, the maximum number of SBVH traversal and intersection operations is clearly
below the numbers for the other methods in most cases. Similarly, the accumulated overlap surface area of child nodes in the SBVH is greatly
reduced compared to the other techniques (seventh column). The eighth column lists the number of successful spatial splits used during SBVH
construction. The last column shows that the reduction of ray tracing costs results in a significant performance improvement by up to a factor
of two compared to a regular BVH.



user parameter to blend between regular BVH behavior and a full
SBVH, but does not leave the selection of the actual splitting thresh-
old to the user. This makes the SBVH very practical compared to
other techniques.

6.1 Future Work

We have shown that using spatial splits in a BVH can greatly im-
prove its efficiency. However, spatial splits also remove some of
the simplicity of regular BVHs. In particular, the ability to easily
refit bounding volumes in dynamic scenes [Lauterbach et al. 2006;
Wald et al. 2007] is lost. Finding a way to combine the two concepts
presents an interesting area of future research.

Currently, our system focuses on building high-quality acceleration
structures and not on efficient construction. However, a relatively
low number of spatial splits is usually executed with α > 0 (see
Table 1). Thus, the additional work over a regular BVH build is
fairly manageable, and SBVH construction times are not dramati-
cally higher than for BVHs even with our unoptimized implemen-
tation. To further improve build performance, a promising avenue
for future research is to investigate parallel builds, in particular on
current high-end GPUs. It is likely that some of the previously pub-
lished parallelization principles can be applied with relatively little
modification [Zhou et al. 2008; Lauterbach et al. 2009]. More gen-
erally, there is a number of readily available efficient construction
schemes for both BVHs and kD-trees, many of which have the po-
tential to work well in our setting for generating the individual split
candidates.

The current SBVH algorithm provides reasonably good control
over the reference duplication rate and the resulting memory foot-
print. More importantly, it is guaranteed that no excessive splitting
takes place, since the user parameter is not directly related to a split
threshold. However, an interesting area for future work would be
to investigate SBVH variants with a hard memory limit. A simple
approach would be a breadth-first construction scheme, which dis-
allows the use of spatial splits once a certain memory threshold has
been reached. A more advanced solution could attempt an in-place
build, e.g. by combining it with techniques discussed in [Wächter
and Keller 2007].

Finally, one can reasonably assume that SBVH hierarchies work
well not only in ray tracing scenarios. Other applications, such as
collision detection, are likely to benefit from improved hierarchy
quality as well.
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