
INTRODUCTION

This case study shows the advantages of using GPU’s in the
compute intensive field of molecular simulations during the
analysis of resultant trajectories. The problem analyzes the
probability of finding three particles at a certain distance by
measuring the multi-particle distribution function.

CHALLENGE

The core issue that the research team faced was the need to
compute complex calculations from a large volume of data in
a timely fashion. Common algorithms used for analyzing
molecular dynamics trajectories traditionally run as serial
codes which the existing CPU based compute infrastructure
was taking a day or more for each simulation. With better
availability of compute power and availability of off-the-shelf
package softwares accelerated using GPU’s, the data size has
increased to a point where analysis part needs to be
parallelized as well in order to gain overall performance. In
such situations, the serial analysis could take much longer
than the simulation itself.

SOLUTION

The research team ported their algorithm to CUDA® and
addressed the compute issue by using NVIDIA® GPUs,
eventually scaling to an NVIDIA® Tesla® K20, with the
objective of migrating to Tesla® K40. Also, since the problem
is embarrassingly parallel, multiple GPU’s in the same node
– or across nodes can be used as well.

OUTCOME

The result was successful completion of calculation
computation with an output of results, as well as reduction of
simulation time to hours and hence faster and successful
completion of the project. The conclusion was that GPUs, with
their parallel computing architecture, accelerate applications
and enhance computation speed even when handling a large
volume of data, and when used in conjunction with a GPU
programming language such as CUDA. The basic CUDA code
gives a 30X scale up as compared to the serial code whereas
with using multi-gpu with 2 cards the scalability was as high
as 60x over a single serial process.

GPU USAGE IN MOLECULAR
DYNAMICS TRAJECTORY
ANALYSIS CA

SE
 S

TU
D

Y
IIT

 D
EL

H
I

EXECUTIVE SUMMARY

Image for representation purpose only

INTRODUCTION

Using Graphical Processing Units (GPUs) for conventional
computation is very common today, with many applications
implemented on CUDA (Common Unified Device Architecture),
including algorithms used in molecular dynamics, quantum
chemistry, physics, bioinformatics, etc. A large number of
traditional software suites have added GPUs as accelerators,
and packages such as LAMMPS, GROMACS, NAMD and
AMBER showing 3-5x improvement in speeds “off the shelf”.
With simulation sizes growing, the data generated and the
required calculations which follow have grown tremendously.
As a result, common algorithms to analyse molecular
dynamics trajectories, traditionally run as serial codes need to
be ported onto parallel architectures. Since these codes are
embarrassingly parallel, CUDA on GPUs is a logical choice.
This case study deals with analysis of data from molecular
dynamics simulations of large systems.

Among the many static and dynamical properties which are
calculated from an MD trajectory is the radial distribution
function, or the pair correlation function. The property
measures the probability of finding two particles at a certain
distance. This code has been successfully parallelized and
ported onto CUDA with a very high efficiency [1]. Among the
properties which can be obtained from the RDF is the
translational entropy or the “pair” entropy. As the name
suggests, the pair entropy of a system measures that part of
the entropy of the system which originates due to pairs.
Similarly, the triplet entropy, i.e. entropy contribution due to
triads[2] can be computed.

CHALLENGE

Calculation of triplet correlation functions involves selection of
all triads of particles which obey certain distance constraints.
This yields the problem into a computation which grows as N3.
Calculation of triplet entropy additionally needs the radial
distribution function (RDF), which is of the order of N2. In this
case study, we use the RDF computed on the GPU to further
accelerate the triplet calculation. The input consists a
trajectory of “ncon” frames, each of “N” particles. All frames
and all particles are independent - and hence calculation of
both RDF and the triplet histogram can be parallelized.
The output would consist of (a) the RDF histogram (1 D integer
array) (b) the triplet histogram (3 D integer array). The serial
FORTRAN code takes approximately 24 hours for N = 4096
atoms and ncon = 5000 configurations

SOLUTION

CUDA Kernels
There are two CUDA Kernels involved in the calculation - (a)
calculates the pair correlations, and pre-processes the
distance information for the triplet correlations, and (b)
calculates the triplet correlations using the information from
the (a).

Pair Correlation calculation
In this kernel, “pair gpu”, all pairs within a distance rcut are
counted and the histogram is updated. Each instance of the
kernel processes a single atom i. Additionally, the neighbor list
of the atom i is stored in the form of vector data for use by the
next kernel. This kernel takes a fraction of the overall triplet
calculation. e.g. for N = 4096 this kernel takes < 0.5s.

Triplet correlation calculation
In this case, kernel grids are spawned for each atom i. This is
done either sequentially, or via streams. Each instance of the
kernel works on an i-j pair and updates the 3D histogram by
looping over the third atom k. Both j and k are picked from the
neighbor list generated in the pair gpu kernel.

The data obtained from this CUDA-C kernel is passed on to the
original FORTRAN code for further processing. This
processing is relatively fast, and is independent of the number
of frames.

OUTCOME

For a system of 4096 particles, for 5000 configurations, time
taken by the serial program is 17-18 hours on the “best”
machine available (3.0 GHz 8GB RAM). In comparison, the
CUDA code takes 30 minutes on a single K20 card. The code
has also been modified to use 2 GPU cards simultaneously.
This cuts down the time to ~18 minutes. The basic CUDA code
gives a ~30x scale up, as compared to the serial code. With 2
cards, the scale up is ~60x. Currently, the code is being
actively used for calculations of three particle entropies of
alkanes and other systems of interest in the group. The system
size for alkanes is 6720 carbon atoms. The CUDA code takes
2-3 hours for the calculation; the serial code is predicted to
take ~60 hours.

CONCLUSION AND FUTURE SCOPE

Since the problem itself is embarrassingly parallel, bigger
systems with large number of frames can be distributed
across multiple GPUs with the help of MPI. We are in the
process of optimizing the code and expanding it to be run over
multiple nodes. The study can also be extended to analysis of
data obtained from confocal microscopy experiments. Higher
order multi-particle correlation functions can also be
potentially investigated using this approach.

References

[1] Levine, B. G., Stone, J. E., and Kohlmeyer, A. J. Comput. Phys. 230(9),
3556–3569 May (2011).

[2] Singh, M., Dhabal, D., Nguyen, A. H., Molinero, V., and Chakravarty, C.
Phys. Rev. Lett. 112(14), 147801 April (2014).

© 2015 NVIDIA Corporation. All rights reserved. NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in
the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

www.nvidia.in/tesla

DETAILED DESCRIPTION
CALCULATION OF TRIPLET CORRELATION
FUNCTIONS USING CUDA®

Gourav Shrivastav, Manish Agarwal and Charusita Chakravarty
Department of Chemistry, Indian Institute of Technology Delhi, India
July 1, 2014

